

HPS Imperator Encapsulated Industrial Control Transformer

INNOVATIVE DESIGN

The HPS Imperator series is a unique innovative and compact design that provides the ideal solution for any industrial control application.

The HPS Imperator's unique terminal block design allows for the quick and easy installation of standard secondary or optional primary 13/32" x 1 1/2" midget/type CC fuse clips on every unit. This is the simplest and most inexpensive fusing installation provided on any industrial control transformer in the market today.

The windings and internal terminations of the HPS Imperator are encapsulated which protects them from moisture, dirt and other airborne contaminants. The custom molded coil covers, with their unique 'fin shaped' design, combine superior transformer cooling properties with a clean bold look.

The HPS Imperator utilizes custom serrated terminals, in combination with standard SEMS washer screws, making connections quicker to install; and provides superior connection strength when connecting with bare, solid or stranded wire. It also allows for ring or spade termination connectors.

APPLICATIONS

Process Controls

Control Boards

Panel Shops

HVAC Panels

Machine Automation

Power Timers, Solenoids and Controllers

APPROVALS

- UL Listed (Approved for U.S. and Canada)
- CE Mark standard on all units
- RoHS Compliant

THE PERFECT SOLUTION

The HPS Imperator series of industrial control transformers are specifically designed to meet the high inrush current levels where electromagnetic components such as relays, solenoids and magnetic motor starters are used.

With 11 standard voltage groups, a VA range from 50VA to 1500VA and available with standard secondary and optional primary fuse kits, the HPS Imperator series provides the perfect solution for any application.

SUPERIOR QUALITY \& VALUE

The HPS Imperator series design, utilizing superior insulation systems and being constructed with high quality silicon steel laminations for optimum performance, meet or exceed UL, CSA and CE standards.

Backed by an industry leading LIFETIME warranty, the HPS Imperator industrial control transformer line offers superior performance, quality and value.

INDUSTRIES

Paper Mills

Printing

Automotive

Packaging Systems

Process Automation

FEATURES AND BENEFITS

- 600 V class, rated industrial control transformers
- 11 standard multi primary and secondary voltage groups available ${ }^{1}$
- 50/60 Hertz (60 Hz on $\mathrm{PH}^{* * * A J ~ \& ~ P H * * * A R) ~}$
- VA range from 50 up to 1500^{1}
- Robust insulation system:
- 50-150VA, temperature rise $55^{\circ} \mathrm{C}$, insulation class $130^{\circ} \mathrm{C}$
- 250-1500VA, temperature rise $80^{\circ} \mathrm{C}$, insulation class $130^{\circ} \mathrm{C}$
- Constructed with high quality silicon steel laminations that provide optimum performance and reliability
- Encapsulated coils encased in a custom injection molded cover, protect coils and terminations from moisture, dirt and other industrial airborne contaminants
- Mounting Feet: made of heavy steel and welded or bolted to the core, these mounting feet provide superior
 strength in a compact design
- Termination: combination slot/Phillips \#6 screw, complete with SEMS washer (suitable for 18 AWG to 14 AWG solid or 14 AWG stranded wire)
- Standard SEMS washers - supplied on all units ${ }^{2}$
- Standard secondary fuse kits -utilizing 13/32" x 1 1/2"[$10.3 \times 38.1 \mathrm{~mm}$] midget/type CC fuse clips (supplied with all units)
- Optional primary fuse kits available utilizing $13 / 32^{\prime \prime} \times 11 / 2^{\prime \prime}[10.3 \times 38.1 \mathrm{~mm}]$ midget/type CC fuse clips
- Optional finger safe terminal covers available on all units
- LIFETIME Warranty (Limited)
${ }^{1}$ special voltages and VA sizes available upon request
${ }^{2}$ excluding PH750PG, PH1000PG, PH750MLI, PH1000MLI

Terminal connection numbers molded into terminal block and correspond to nameplate and wiring diagrams, make connecting the HPS Imperator quick and simple.

SEMS washer allows for easy connection of supply or load wires with or without terminal

Innovative terminal block
design provides for easy
hook-up and installation of
fuse clips. Innovative terminal block
design provides for easy
hook-up and installation of
fuse clips. Innovative terminal block
design provides for easy
hook-up and installation of
fuse clips. Innovative terminal block
design provides for easy
hook-up and installation of
fuse clips.

Optional removable finger safe terminal covers available on all standard units.

connectors

Standard secondary and optional primary fuse kits utilizing 13/32" x 1 1/2" [10.3 $\times 38.1 \mathrm{~mm}$]midget/type CC fuse clips provide an economical solution to your fusing requirements (fuses not supplied).

Made of heavy steel and welded or bolted to the core, these mounting feet provide superior strength in a compact design.

Custom injection molded coil cover with its unique "fin shaped" design combine superior cooling properties with a clean, bold look.

HPS Imperator
 Encapsulated Industrial Control Transformer

	Primary Voltage:	600	575	550	
GROUP A	Secondary Voltage:	120×240	115×230	110×220	60 Hertz

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50AJ	A	0.42/0.21	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\begin{gathered} 2.7 \\ {[1.3]} \end{gathered}$	PFK1
75	PH75AJ	A	0.63/0.31	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.69 \\ {[93.73]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{aligned} & 2.8 \\ & {[1.3]} \end{aligned}$	PFK1
100	PH100AJ	A	0.83/0.42	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 5.50 \\ {[139.70]} \end{gathered}$	$\begin{gathered} 4.1 \\ {[1.9]} \end{gathered}$	PFK1
150	PH150AJ	B	1.25/0.63	$\begin{array}{\|c\|} \hline 4.00 \\ {[101.60]} \end{array}$	$\begin{array}{c\|} \hline 4.63 \\ {[117.61]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{array}{\|c\|c} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.13 \\ {[155.71]} \end{gathered}$	$\begin{aligned} & 4.9 \\ & {[2.3]} \end{aligned}$	PFK2
250	PH250AJ	B	2.08/1.04	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{array}{\|c\|} \hline 5.25 \\ {[133.35]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.75 \\ {[171.45]} \end{gathered}$	$\begin{aligned} & 7.0 \\ & {[3.2]} \end{aligned}$	PFK2
350	PH350AJ	B	2.92/1.46	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.88 \\ {[123.96]} \end{array}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.38 \\ {[162.06]} \end{gathered}$	$\begin{aligned} & 8.3 \\ & {[3.8]} \end{aligned}$	PFK3
500	PH500AJ	B	4.17/2.08	$\begin{array}{c\|} \hline 4.75 \\ {[120.65]} \end{array}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.31 \\ {[109.48]} \end{array}$	$\begin{array}{\|c\|} \hline 4.06 \\ {[103.13]} \end{array}$	$\begin{gathered} 3.44 \\ {[87.38]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.06 \\ {[179.33]} \end{gathered}$	$\begin{aligned} & 11.6 \\ & {[5.3]} \end{aligned}$	PFK3
750	PH750AJ	B	6.25/3.13	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 6.38 \\ {[162.06]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.31 \\ {[109.48]} \end{array}$	$\begin{array}{\|c\|} \hline 4.38 \\ {[111.26]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.00 \\ {[101.60]} \end{array}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.88 \\ {[200.16]} \end{gathered}$	$\begin{gathered} 16.6 \\ {[7.5]} \end{gathered}$	PFK3
1000	PH1000AJ	B	8.33/4.17	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\begin{array}{\|c\|} \hline 6.50 \\ {[165.10]} \end{array}$	$\begin{array}{\|c\|} \hline 4.94 \\ {[125.48]} \end{array}$	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{array}{\|c\|} \hline 4.09 \\ {[103.89]} \end{array}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.00 \\ {[203.20]} \end{gathered}$	$\begin{aligned} & 21.0 \\ & {[9.5]} \\ & \hline \end{aligned}$	PFK3
1500	PH1500AJ	B	12.5/6.25	$\begin{array}{c\|} \hline 5.25 \\ {[133.35]} \end{array}$	$\begin{array}{\|c\|} \hline 7.56 \\ {[192.03]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.94 \\ {[125.48]} \end{array}$	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{array}{\|c\|} \hline 5.44 \\ {[138.18]} \end{array}$	$\begin{aligned} & 0.38 \times 1.00 \\ & {[9.66 \times 25.4]} \end{aligned}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 9.06 \\ {[230.13]} \end{gathered}$	$\begin{aligned} & 30.0 \\ & {[13.5]} \end{aligned}$	PFK3

*Secondary fuse clips, fuse clip mounting screws and primary and secondary voltage links/jumpers supplied standard with transformers.
*Dimensions in Inches [mm] Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50AR	A	4.17/2.08	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\begin{gathered} 2.7 \\ {[1.3]} \end{gathered}$	PFK1
75	PH75AR	A	6.25/3.13	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.69 \\ {[93.73]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 2.8 \\ {[1.3]} \end{gathered}$	PFK1
100	PH100AR	A	8.33/4.17	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.19 \\ {[106.43]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	$\begin{aligned} & 4.5 \\ & {[2.1]} \end{aligned}$	PFK1
150	PH150AR	B	12.5/6.25	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.44 \\ {[163.58]} \end{gathered}$	$\begin{gathered} 5.7 \\ {[2.6]} \end{gathered}$	PFK2
250	PH250AR	B	20.8/10.4	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[3.4]} \end{gathered}$	PFK2
350	PH350AR	B	29.2/14.6	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 4.88 \\ {[123.96]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.38 \\ {[162.06]} \end{gathered}$	$\begin{aligned} & \hline 8.3 \\ & {[3.8]} \end{aligned}$	PFK3
500	PH500AR	B	41.7/20.8	$\begin{gathered} 4.75 \\ {[120.65]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.44 \\ {[87.38]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.06 \\ {[179.33]} \end{gathered}$	$\begin{aligned} & 11.6 \\ & {[5.3]} \end{aligned}$	PFK3

*Secondary fuse clips, fuse clip mounting screws and primary and secondary voltage links/jumpers supplied with transformers.
Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.
*Dimensions in Inches [mm]
Weight in Lbs. [kg]

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50MQMJ	A	0.42/0.21	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{array}{\|c} 4.38 \\ {[111.26]} \end{array}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.82 \\ {[147.83]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
75	PH75MQMJ	A	0.63/0.31	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.88 \\ {[98.56]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.32 \\ {[135.13]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
100	PH100MQMJ	A	0.83/0.42	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.19 \\ {[106.43]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	$\begin{gathered} 4.5 \\ {[2.1]} \end{gathered}$	PFK1
150	PH150MQMJ	B	1.25/0.63	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{array}{\|c} 4.94 \\ {[125.48]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\left[\begin{array}{c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}\right.$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.44 \\ {[163.58]} \end{gathered}$	$\begin{aligned} & 5.7 \\ & {[2.6]} \end{aligned}$	PFK2
250	PH250MQMJ	B	2.08/1.04	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\left[\begin{array}{c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}\right.$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{aligned} & 7.5 \\ & {[3.4]} \end{aligned}$	PFK2
350	PH350MQMJ	B	2.92/1.46	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \\ \hline \end{array}$	$\begin{gathered} 5.19 \\ {[131.83]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \end{aligned}$	PFK3
500	PH500MQMJ	B	4.17/2.08	$\begin{array}{\|c\|} \hline 4.75 \\ {[120.65]} \end{array}$	$\begin{array}{\|c} 5.94 \\ {[150.88]} \end{array}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.44 \\ {[188.98]} \end{gathered}$	$\begin{aligned} & 14.2 \\ & {[6.4]} \end{aligned}$	PFK3
750	PH750MQMJ	B	6.25/3.13	$\begin{array}{\|c\|} \hline 5.13 \\ {[130.31]} \end{array}$	$\begin{array}{\|c} 6.69 \\ {[169.93]} \end{array}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	$\begin{aligned} & 16.6 \\ & {[7.5]} \end{aligned}$	PFK3
1000	PH1000MQMJ	B	8.33/4.17	$\begin{array}{\|c\|} \hline 5.25 \\ {[133.35]} \end{array}$	$\begin{gathered} 6.81 \\ {[172.98]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	$\begin{aligned} & 23.6 \\ & {[10.7]} \end{aligned}$	PFK3
1500	PH1500MQMJ	B	12.5/6.25	$\begin{array}{\|c\|} \hline 5.25 \\ {[133.35]} \end{array}$	$\begin{array}{\|c\|} \hline 8.19 \\ {[208.03]} \end{array}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.06 \\ {[153.93]} \end{gathered}$	$\begin{gathered} 0.38 \times 1.00 \\ {[9.66 \times 25.4]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 9.69 \\ {[246.13]} \end{gathered}$	$\begin{aligned} & 32.0 \\ & {[14.4]} \end{aligned}$	PFK3

*Secondary fuse clips, fuse clip mounting screws and primary and secondary voltage links/jumpers supplied standard with transformers.
*Dimensions in Inches [mm] Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.

Primary Voltage:	$\mathbf{2 4 0 \times 4 8 0}$	230×460
Secondary Voltage:	$\mathbf{1 2 \times 2 4}$	11.5×23

220×440

Secondary Voltage: $\mathbf{1 2 \times 2 4}$
11×22
50/60 Hertz

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50QR	A	4.17/2.08	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.82 \\ {[147.83]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
75	PH75QR	A	6.25/3.13	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.88 \\ {[98.56]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.32 \\ {[135.13]} \end{gathered}$	$\begin{aligned} & \hline 3.5 \\ & {[1.6]} \end{aligned}$	PFK1
100	PH100QR	A	8.33/4.17	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.19 \\ {[106.43]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	$\begin{gathered} 4.5 \\ {[2.1]} \end{gathered}$	PFK1
150	PH150QR	B	12.5/6.25	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.44 \\ {[163.58]} \end{gathered}$	$\begin{aligned} & 5.7 \\ & {[2.6]} \end{aligned}$	PFK2
250	PH250QR	B	20.8/10.4	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[3.4]} \end{gathered}$	PFK2
350	PH350QR	B	29.2/14.6	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.19 \\ {[131.83]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \end{aligned}$	PFK3
500	PH500QR	B	41.7/20.8	$\begin{gathered} 4.75 \\ {[120.65]} \end{gathered}$	$\begin{gathered} 5.94 \\ {[150.88]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.44 \\ {[188.98]} \end{gathered}$	$\begin{aligned} & 14.2 \\ & {[6.4]} \end{aligned}$	PFK3

*Secondary fuse clips, fuse clip mounting screws and primary and secondary voltage links/jumpers supplied standard with transformers.
*Dimensions in Inches [mm]
Weight in Lbs. [kg]

HPS Imperator
 Encapsulated Industrial Control Transformer

GROUP E

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50SP	A	0.42/0.21	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.82 \\ {[147.83]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \\ \hline \end{gathered}$	PFK1
75	PH75SP	A	0.63/0.31	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.88 \\ {[98.56]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.32 \\ {[135.13]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
100	PH100SP	A	0.83/0.42	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.19 \\ {[106.43]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{array}{\|c} 5.63 \\ {[143.01]} \end{array}$	$\begin{aligned} & 4.5 \\ & {[2.1]} \\ & \hline \end{aligned}$	PFK1
150	PH150SP	B	1.25/0.63	$\begin{array}{\|c\|} \hline 4.00 \\ {[101.60]} \end{array}$	$\begin{array}{\|c} 4.94 \\ {[125.48]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.44 \\ {[163.58]} \end{gathered}$	$\begin{gathered} 5.7 \\ {[2.6]} \end{gathered}$	PFK2
250	PH250SP	B	2.08/1.04	$\begin{array}{\|c} 4.50 \\ {[114.30]} \end{array}$	$\begin{array}{\|c} 5.44 \\ {[138.18]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \\ \hline \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \\ \hline \end{gathered}$	$\begin{gathered} 7.5 \\ {[3.4]} \\ \hline \end{gathered}$	PFK2
350	PH350SP	B	2.92/1.46	$\begin{array}{\|c} 4.50 \\ {[114.30]} \end{array}$	$\begin{array}{\|c} 5.19 \\ {[131.83]} \end{array}$	$\begin{array}{\|c} 4.44 \\ {[112.78]} \end{array}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \\ \hline \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \\ & \hline \end{aligned}$	PFK3
500	PH500SP	B	4.17/2.08	$\begin{gathered} 4.75 \\ {[120.65]} \end{gathered}$	$\begin{array}{\|c} 5.94 \\ {[150.88]} \\ \hline \end{array}$	$\begin{array}{\|c} 4.31 \\ {[109.48]} \\ \hline \end{array}$	$\left.\begin{array}{c} 4.06 \\ {[103.13]} \end{array}\right]$	$\begin{gathered} 3.81 \\ {[96.78]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \\ \hline \end{array}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.44 \\ {[188.98]} \end{gathered}$	$\begin{aligned} & \hline 14.2 \\ & {[6.4]} \\ & \hline \end{aligned}$	PFK3
750	PH750SP	B	6.25/3.13	$\left\lvert\, \begin{gathered} 5.13 \\ {[130.31]} \end{gathered}\right.$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\left\lvert\, \begin{gathered} 4.31 \\ {[109.48]} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{array}$	$\begin{gathered} 5.01 \\ {[127.34]} \end{gathered}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	$\begin{aligned} & 16.6 \\ & {[7.5]} \end{aligned}$	PFK3
1000	PH1000SP	B	8.33/4.17	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\begin{gathered} 6.81 \\ {[172.98]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\left\|\begin{array}{c} 4.50 \\ {[114.30]} \end{array}\right\|$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{array}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	$\begin{aligned} & 23.6 \\ & {[10.7]} \end{aligned}$	PFK3

Secondary fuse clips, fuse clip mounting screws and primary and secondary voltage links/jumpers supplied standard with transformers.
*Dimensions in Inches [mm] Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.

Weight in Lbs. [kg]

GROUP F

Primary Voltage: $\quad 120 \times 240$
 Secondary Voltage:
 120×240

115×230
110×220
115×230
110×220
50/60 Hertz

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50PP	A	0.42/0.21	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{array}{\|c} 4.38 \\ {[111.26]} \end{array}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.82 \\ {[147.83]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
75	PH75PP	A	0.63/0.31	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.88 \\ {[98.56]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.32 \\ {[135.13]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
100	PH100PP	A	0.83/0.42	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\left\|\begin{array}{c} 4.19 \\ {[106.43]} \end{array}\right\|$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	$\begin{gathered} 4.5 \\ {[2.1]} \end{gathered}$	PFK1
150	PH150PP	B	1.25/0.63	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.94 \\ {[125.48]} \\ \hline \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.44 \\ {[163.58]} \end{gathered}$	$\begin{gathered} 5.7 \\ {[2.6]} \end{gathered}$	PFK2
250	PH250PP	B	2.08/1.04	$\begin{gathered} \hline 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \\ \hline \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[3.4]} \\ \hline \end{gathered}$	PFK2
350	PH350PP	B	2.92/1.46	$\begin{array}{\|c\|} 4.50 \\ {[114.30]} \\ \hline \end{array}$	$\begin{array}{\|c} 5.19 \\ {[131.83]} \end{array}$	$\begin{array}{\|c} 4.44 \\ {[112.78]} \end{array}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \\ \hline \end{gathered}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \\ & \hline \end{aligned}$	PFK3
500	PH500PP	B	4.17/2.08	$\begin{gathered} 4.75 \\ {[120.65]} \\ \hline \end{gathered}$	$\begin{gathered} 5.94 \\ {[150.88]} \\ \hline \end{gathered}$	$\begin{array}{\|c} 4.31 \\ {[109.48]} \\ \hline \end{array}$	$\begin{gathered} 4.06 \\ {[103.13]} \\ \hline \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \\ \hline \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.44 \\ {[188.98]} \end{gathered}$	$\begin{aligned} & 14.2 \\ & {[6.4]} \\ & \hline \end{aligned}$	PFK3
750	PH750PP	B	6.25/3.13	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{array}{\|c} 6.69 \\ {[169.93]} \end{array}$	$\begin{array}{\|c} 4.31 \\ {[109.48]} \end{array}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\begin{array}{\|c} 4.31 \\ {[109.48]} \end{array}$	$\begin{array}{\|c} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \\ \hline \end{array}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	$\begin{aligned} & 16.6 \\ & {[7.5]} \\ & \hline \end{aligned}$	PFK3
1000	PH1000PP	B	8.33/4.17	$\begin{gathered} \hline 5.25 \\ {[133.35]} \end{gathered}$	$\begin{array}{\|c\|} \hline 6.81 \\ {[172.98]} \end{array}$	$\begin{array}{\|c} 4.94 \\ {[125.48]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	$\begin{aligned} & 23.6 \\ & {[10.7]} \end{aligned}$	PFK3
1500	PH1500PP	B	12.5/6.25	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} 8.19 \\ {[208.03]} \end{array}\right.\right]$	$\left\lvert\, \begin{gathered} 4.94 \\ {[125.48]} \end{gathered}\right.$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.06 \\ {[153.93]} \end{gathered}$	$\begin{gathered} 0.38 \times 1.0 \\ {[9.66 \times 25.4]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 9.69 \\ {[246.13]} \end{gathered}$	$\begin{aligned} & 32.0 \\ & {[14.4]} \end{aligned}$	PFK3

GROUP G

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50PG	A	4.17/2.08	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.82 \\ {[147.83]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
75	PH75PG	A	6.25/3.13	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.88 \\ {[98.56]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.32 \\ {[135.13]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[1.6]} \end{gathered}$	PFK1
100	PH100PG	A	8.33/4.17	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.19 \\ {[106.43]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\left[\begin{array}{c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}\right.$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	$\begin{aligned} & 4.5 \\ & {[2.1]} \end{aligned}$	PFK1
150	PH150PG	B	12.5/6.25	$\begin{array}{\|c\|} \hline 4.00 \\ {[101.60]} \end{array}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.44 \\ {[163.58]} \end{gathered}$	$\begin{aligned} & 5.7 \\ & {[2.6]} \end{aligned}$	PFK2
250	PH250PG	B	20.8/10.4	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{aligned} & 7.5 \\ & {[3.4]} \end{aligned}$	PFK2
350	PH350PG	B	29.2/14.6	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{gathered} 5.19 \\ {[131.83]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.44 \\ {[112.78]} \end{array}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \end{aligned}$	PFK3
500	PH500PG	B	41.7/20.8	$\begin{array}{\|c\|} \hline 4.75 \\ {[120.65]} \end{array}$	$\begin{gathered} 5.94 \\ {[150.88]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.31 \\ {[109.48]} \end{array}$	$\begin{array}{\|c\|} \hline 4.06 \\ {[103.13]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{array}{\|c} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{array}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.44 \\ {[188.98]} \end{gathered}$	$\begin{aligned} & 14.2 \\ & {[6.4]} \end{aligned}$	PFK3
750	PH750PG	C	62.5/31.3	$\begin{array}{\|c\|} \hline 5.25 \\ {[133.35]} \end{array}$	$\begin{gathered} 6.25 \\ {[158.75]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.94 \\ {[125.48]} \end{array}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 7.88 \\ {[200.16]} \end{gathered}$	$\begin{aligned} & 16.6 \\ & {[7.5]} \end{aligned}$	PFK3
1000	PH1000PG	C	83.3/41.7	$\begin{array}{\|c\|} \hline 5.25 \\ {[133.35]} \end{array}$	$\begin{gathered} 6.81 \\ {[172.98]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.94 \\ {[125.48]} \\ \hline \end{array}$	$\begin{array}{\|c} 4.50 \\ {[114.30]} \end{array}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	$\begin{aligned} & 23.6 \\ & {[10.7]} \end{aligned}$	PFK3

*Secondary fuse clips and fuse clip mounting screws supplied standard with transformers up to and including 500VA. Primary and secondary voltage links/jumpers
*Dimensions in Inches [mm] supplied standard with transformers. Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.

GROUP H

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	$\begin{array}{\|c\|} \text { Opt. } \\ \text { Pri. } \\ \text { Fuse } \\ \text { Kit P/N } \end{array}$
				A	B	C	D	E	G X H				
50	PH50MBMH	A	0.43	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.50 \\ {[139.70]} \end{gathered}$	$\begin{gathered} 4.1 \\ {[1.9]} \end{gathered}$	PFK5
75	PH75MBMH	A	0.65	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{array}{\|c} 4.19 \\ {[106.43]} \end{array}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{array}{\|c\|c} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	$\begin{gathered} 4.5 \\ {[2.1]} \end{gathered}$	PFK5
100	PH100MBMH	B	0.87	$\begin{array}{\|c\|} 4.00 \\ {[101.60]} \end{array}$	$\begin{array}{\|c} 4.63 \\ {[117.61]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\left\|\begin{array}{c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}\right\|$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.25 \\ {[158.75]} \end{gathered}$	$\begin{gathered} 4.9 \\ {[2.3]} \\ \hline \end{gathered}$	PFK6
150	PH150MBMH	B	1.30	$\begin{array}{\|c\|} \hline 4.00 \\ {[101.60]} \end{array}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{gathered} 7.6 \\ {[3.5]} \end{gathered}$	PFK6
250	PH250MBMH	B	2.17	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{gathered} 5.19 \\ {[131.83]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \end{aligned}$	PFK6
350	PH350MBMH	B	3.04	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \\ \hline \end{array}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 7.06 \\ {[179.33]} \end{gathered}$	$\begin{aligned} & 11.0 \\ & {[5.0]} \end{aligned}$	PFK7
500	PH500MBMH	B	4.35	$\begin{array}{\|c\|} \hline 4.75 \\ {[120.65]} \end{array}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	$\begin{aligned} & 16.3 \\ & {[7.4]} \end{aligned}$	PFK7
750	PH750MBMH	B	6.52	$\begin{array}{\|c\|} \hline 5.25 \\ {[133.35]} \end{array}$	$\begin{array}{\|c\|} \hline 6.81 \\ {[172.98]} \end{array}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	$\begin{aligned} & 23.6 \\ & {[10.7]} \end{aligned}$	PFK7
1000	PH1000MBMH	B	8.70	$\begin{array}{\|c\|} \hline 5.30 \\ {[134.62]} \end{array}$	$\begin{array}{\|c\|} \hline 7.80 \\ {[198.12]} \end{array}$	$\begin{gathered} 4.90 \\ {[124.46]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.11 \\ {[155.20]} \end{gathered}$	$\begin{gathered} 0.38 \times 1.0 \\ {[9.66 \times 25.4]} \end{gathered}$	$\begin{gathered} 5.60 \\ {[142.24]} \end{gathered}$	$\begin{gathered} 9.70 \\ {[246.38]} \end{gathered}$	$\begin{aligned} & 31.2 \\ & {[14.1]} \end{aligned}$	PFK7
1500	PH1500MBMH	B	13.0	$\begin{array}{\|c\|} \hline 5.30 \\ {[134.62]} \end{array}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.06 \\ {[153.93]} \end{gathered}$	$\begin{gathered} 0.38 \times 1.0 \\ {[9.66 \times 25.4]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 9.69 \\ {[246.13]} \end{gathered}$	$\begin{gathered} 32.0 \\ {[14.4]} \end{gathered}$	PFK7

HPS Imperator Encapsulated Industrial Control Transformer

GROUP I

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50MLI	A	0.43/2.08	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\left[\begin{array}{c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}\right.$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.50 \\ {[139.70]} \end{gathered}$	$\begin{aligned} & 4.0 \\ & {[1.8]} \end{aligned}$	PFK5
75	PH75MLI	A	0.65/3.13	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.25 \\ {[107.95]} \end{array}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.69 \\ {[144.53]} \end{gathered}$	$\begin{gathered} 4.6 \\ {[2.1]} \end{gathered}$	PFK5
100	PH100MLI	A	0.87/4.17	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.69 \\ {[119.13]} \end{array}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.25 \\ {[158.75]} \end{gathered}$	$\begin{gathered} 5.2 \\ {[2.4]} \end{gathered}$	PFK5
150	PH150MLI	B	1.30/6.25	$\begin{array}{\|c\|} \hline 4.00 \\ {[101.60]} \end{array}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{aligned} & 7.6 \\ & {[3.5]} \end{aligned}$	PFK6
250	PH250MLI	B	2.17/10.42	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.19 \\ {[131.83]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \end{aligned}$	PFK6
350	PH350MLI	B	3.04/14.58	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 7.06 \\ {[179.33]} \end{gathered}$	$\begin{aligned} & 11.0 \\ & {[5.0]} \end{aligned}$	PFK7
500	PH500MLI	B	4.35/20.83	$\begin{array}{\|c} \hline 4.75 \\ {[120.65]} \end{array}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{array}{\|c} 4.06 \\ {[103.13]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	$\begin{aligned} & 16.3 \\ & {[7.4]} \end{aligned}$	PFK7
750	PH750MLI	C	6.52/31.25	$\begin{aligned} & 5.25 \\ & {[133.35]} \end{aligned}$	$\begin{gathered} 6.50 \\ {[165.10]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 4.13 \\ {[104.91]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	$\begin{aligned} & 21.0 \\ & {[9.5]} \end{aligned}$	PFK7
1000	PH1000MLI	C	8.70/41.67	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.81 \\ {[147.58]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 9.69 \\ {[246.13]} \end{gathered}$	$\begin{aligned} & 31.2 \\ & {[14.1]} \end{aligned}$	PFK7

*Secondary fuse clips and fuse clip mounting screws supplied standard with transformers up to and including 500VA. Primary and secondary voltage links/jumpers supplied standard with transformers. Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.
*Dimensions in Inches [mm]
Weight in Lbs. [kg]

GROUP J

Primary Voltage: \quad 415/400/380
Secondary Voltage: 110×220
50/60 Hertz

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50MEMX	A	0.45/0.23	$\begin{gathered} 3.00 \\ {[76.20]} \end{gathered}$	$\begin{gathered} 4.38 \\ {[111.26]} \end{gathered}$	$\begin{gathered} 3.19 \\ {[81.03]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{gathered} 2.25 \\ {[57.15]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 5.82 \\ {[147.83]} \end{gathered}$	$\begin{aligned} & 3.5 \\ & {[1.6]} \end{aligned}$	PFK4
75	PH75MEMX	A	0.68/0.34	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 5.50 \\ {[139.70]} \end{gathered}$	$\begin{gathered} 4.1 \\ {[1.9]} \end{gathered}$	PFK5
100	PH100MEMX	A	0.91/0.45	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.19 \\ {[106.43]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	$\begin{aligned} & 4.5 \\ & {[2.1]} \end{aligned}$	PFK5
150	PH150MEMX	B	1.36/0.68	$\begin{gathered} 4.00 \\ {[101.60]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.44 \\ {[163.58]} \end{gathered}$	$\begin{aligned} & 5.7 \\ & {[2.6]} \end{aligned}$	PFK6
250	PH250MEMX	B	2.27/1.14	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.13 \\ {[79.51]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	$\begin{aligned} & 7.5 \\ & {[3.4]} \end{aligned}$	PFK6
350	PH350MEMX	B	3.18/1.59	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 5.19 \\ {[131.83]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{aligned} & 10.1 \\ & {[4.6]} \end{aligned}$	PFK7
500	PH500MEMX	B	4.55/2.27	$\begin{gathered} 4.75 \\ {[120.65]} \end{gathered}$	$\begin{gathered} 5.94 \\ {[150.88]} \end{gathered}$	$\begin{gathered} 4.31 \\ {[109.48]} \end{gathered}$	$\begin{gathered} 4.06 \\ {[103.13]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 7.44 \\ {[188.98]} \end{gathered}$	$\begin{aligned} & 14.2 \\ & {[6.4]} \end{aligned}$	PFK7
750	PH750MEMX	B	6.82/3.41	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\begin{gathered} 6.50 \\ {[165.10]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 4.13 \\ {[104.91]} \end{gathered}$	$\left[\begin{array}{c} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{array}\right.$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.00 \\ {[203.20]} \end{gathered}$	$\begin{aligned} & 21.0 \\ & {[9.5]} \end{aligned}$	PFK7
1000	PH1000MEMX	B	9.09/4.55	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	$\begin{gathered} 6.81 \\ {[172.98]} \end{gathered}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{gathered}$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	$\begin{gathered} 23.6 \\ {[10.7]} \end{gathered}$	PFK7

Primary Voltage: $\quad \mathbf{3 8 0} / \mathbf{2 7 7 / 2 0 8}$
Secondary Voltage: $\mathbf{1 2 0 \times 2 4 0}$

VA Rating	Catalog Number	Mtg. Fig.	Output Amps	Overall Dimensions*			Mounting Centers*		Mounting Slot*	Height with Finger Guard*	Depth with Finger Guard*	Approx. Ship Weight Lbs.*	Opt. Pri. Fuse Kit P/N
				A	B	C	D	E	G X H				
50	PH50MGJ	A	0.42/0.21	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 3.88 \\ {[98.56]} \end{gathered}$	$\begin{gathered} 3.56 \\ {[90.43]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.50 \\ {[63.50]} \end{gathered}$	$\begin{array}{\|c} \hline 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}$	$\begin{gathered} 4.37 \\ {[111.00]} \end{gathered}$	$\begin{gathered} 5.32 \\ {[135.13]} \end{gathered}$	3.5 [1.6]	PFK5
75	PH75MGJ	A	0.63/0.31	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{gathered} 4.19 \\ {[106.43]} \end{gathered}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 5.63 \\ {[143.01]} \end{gathered}$	4.5 [2.1]	PFK5
100	PH100MGJ	A	0.83/0.42	$\begin{gathered} 3.25 \\ {[82.55]} \end{gathered}$	$\begin{array}{\|c} \hline 4.69 \\ {[119.13]} \end{array}$	$\begin{gathered} 3.63 \\ {[92.21]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\begin{gathered} 2.63 \\ {[66.81]} \end{gathered}$	$\left[\begin{array}{c} 0.22 \times 0.44 \\ {[5.59 \times 11.18]} \end{array}\right.$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.13 \\ {[155.71]} \end{gathered}$	5.2 [2.4]	PFK5
150	PH150MGJ	B	1.25/0.63	$\begin{array}{\|c\|} \hline 4.00 \\ {[101.60]} \end{array}$	$\begin{array}{\|c\|} \hline 5.44 \\ {[138.18]} \end{array}$	$\begin{gathered} 3.81 \\ {[96.78]} \end{gathered}$	$\begin{gathered} 3.38 \\ {[85.86]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69.85]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 4.50 \\ {[114.30]} \end{gathered}$	$\begin{gathered} 6.94 \\ {[176.28]} \end{gathered}$	7.6 [3.5]	PFK6
250	PH250MGJ	B	2.08/1.04	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{gathered} 4.88 \\ {[123.96]} \end{gathered}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{gathered}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} 6.38 \\ {[162.06]} \end{gathered}$	8.3 [3.8]	PFK6
350	PH350MGJ	B	2.92/1.46	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{array}{\|c\|} \hline 5.56 \\ {[141.23]} \end{array}$	$\begin{array}{\|c\|} \hline 4.44 \\ {[112.78]} \end{array}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{gathered} 3.75 \\ {[95.25]} \end{gathered}$	$\begin{array}{\|c} 0.22 \times 0.75 \\ {[5.59 \times 19.05]} \end{array}$	$\begin{gathered} 5.18 \\ {[131.58]} \end{gathered}$	$\begin{gathered} \hline 7.06 \\ {[179.33]} \end{gathered}$	11.0 [5.0]	PFK7
500	PH500MGJ	B	4.17/2.08	$\begin{array}{\|c\|} \hline 4.75 \\ {[120.65]} \end{array}$	$\begin{gathered} 6.69 \\ {[169.93]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.31 \\ {[109.48]} \end{array}$	$\begin{array}{\|c} 4.06 \\ {[103.13]} \end{array}$	$\begin{array}{\|c\|} \hline 4.50 \\ {[114.30]} \end{array}$	$\begin{gathered} 0.31 \times 0.94 \\ {[7.88 \times 23.88]} \end{gathered}$	$\begin{gathered} 5.13 \\ {[130.31]} \end{gathered}$	$\begin{gathered} 8.19 \\ {[208.03]} \end{gathered}$	16.3 [7.4]	PFK7
750	PH750MGJ	B	6.25/3.13	$\begin{gathered} 5.25 \\ {[133.35]} \end{gathered}$	${ }_{[172.98}^{6.81}$	$\begin{gathered} 4.94 \\ {[125.48]} \end{gathered}$	$\begin{aligned} & 4.50 \\ & {[114.30]} \end{aligned}$	$\begin{gathered} 4.44 \\ {[112.78]} \end{gathered}$	$\left[\begin{array}{c} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \end{array}\right.$	$\begin{gathered} 5.56 \\ {[141.23]} \end{gathered}$	$\begin{gathered} 8.31 \\ {[211.08]} \end{gathered}$	23.6 [10.7]	PFK7
1000	PH1000MGJ	B	8.33/4.17	$\begin{array}{\|c\|} 5.25 \\ {[133.35]} \\ \hline \end{array}$	$\begin{array}{\|c\|} 7.25 \\ {[184.15]} \end{array}$	$\begin{array}{\|c} 4.94 \\ {[125.48]} \end{array}$	$\begin{array}{\|c} \hline 4.50 \\ {[114.30]} \\ \hline \end{array}$	$\begin{array}{\|c} 4.83 \\ {[122.69]} \end{array}$	$\begin{array}{\|c} 0.31 \times 0.81 \\ {[7.88 \times 20.58]} \\ \hline \end{array}$	$\begin{gathered} 5.44 \\ {[138.18]} \end{gathered}$	$\begin{gathered} 8.75 \\ {[222.25]} \end{gathered}$	25.5 [11.5]	PFK7

*Secondary fuse clips, fuse clip mounting screws and primary and secondary voltage links/jumpers supplied with transformers.
Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.
Please refer to page 11 for dimensional drawings. Special voltages and VA sizes available upon request.
*Dimensions in Inches [mm]
Weight in Lbs. [kg]

ACCESSORY KITS AVAILABLE

Standard Secondary Fuse Kits

All HPS Imperator control transformers are supplied with standard secondary fuse kits which include: 13/32" x 1 1/2" midget/type CC fuse clips, fuse clip mounting screws, primary and secondary voltage links and the PHAK1 instruction sheet (note: secondary fuse clips and fuse clip mounting screws not supplied on the PH750PG, PH1000PG, PH750MLI and PH1000MLI). Please consult the HPS Transformer Products catalog for additional details.

Optional Primary Fuse Kits

Kit Part Number	Transformer Part Number Suffix's	VA Sizes	Parts Included in Kit
PFK1	Refer to Specification Tables on pages 4 to 7	Refer to Specification Tables on pages 4 to 7	4 fuse clips, 4 mtg. screws, PHAK1 instruction sheet
PFK2			4 fuse clips, 4 mtg. screws, PHAK1 instruction sheet
PFK3			4 fuse clips, 4 mtg. screws, PHAK1 instruction sheet
PFK4			4 fuse clips, 4 mtg. screws, 1 jumper, 1 finger guard, PHAK1 instruction sheet
PFK5			4 fuse clips, 4 mtg. screws, 1 jumper, 1 finger guard, PHAK1 instruction sheet
PFK6			4 fuse clips, 4 mtg. screws, 1 jumper wire, PHAK1 instruction sheet
PFK7			4 fuse clips, 4 mtg. screws, 1 jumper wire, PHAK1 instruction sheet

Note: Maximum allowable current rating on all primary and secondary fuse kits is 30 amps .

HPS Imperator
 Encapsulated Industrial Control Transformer

FACTORY INSTALLED PRIMARY AND SECONDARY FUSE KITS

HPS now stocks some HPS Imperator series voltage groups with FACTORY INSTALLED primary and secondary fuse clips. To order, just add the suffix "-FK" to the end of the standard part number.

Factory installed primary and secondary fuse clips are only available on the following voltage groups:
Group C (p/n: PH***MQMJ-FK) | Group G (p/n: PH***PG-FK) | Group I (p/n: PH***MLI-FK)
On PH750PG-FK, PH1000PG-FK, PH750MLI-FK, and PH1000MLI-FK, only primary fuse clips are included on factory installed units. Secondary fuse clips are not included or available on these units.
Note: All factory installed fuse kits are pre-wired at the transformers highest primary voltage and the lowest secondary voltage. To hook up at a different primary or secondary voltage, please refer to the wiring instruction sheet included with the transformer.

Optional Unfused Finger Guard Kits

Kit Part Number	Transformer Part Number Suffix's	VA Sizes	Parts Included in Kit
FG1	AJ, AR, MQMJ, MEMX, QR, SP, PG, PP	50	1 finger guard (unfused), PHAK1 instruction sheet
FG2	MBMH, MGJ, MLI	50	1 finger guard (unfused), PHAK1 instruction sheet
FG2	All	75	1 finger guard (unfused), PHAK1 instruction sheet
FG2	All (excluding PH100MBMH)	100	1 finger guard (unfused), PHAK1 instruction sheet
	Refer to FG3, FG4 or FG5 below	150 to 1500	

Optional Fused Finger Guard Kits

Kit Part Number	Transformer Part Number Suffix's	VA Sizes	Parts Included in Kit
FGF1	AJ, AR, MQMJ, MEMX, QR, SP, PG, PP	50	1 finger guard (fused), PHAK1 instruction sheet
FGF2	MBMH, MGJ, MLI	50	1 finger guard (fused), PHAK1 instruction sheet
FGF2	All	75	1 finger guard (fused), PHAK1 instruction sheet
FGF2	All (excluding PH100MBMH)	100	1 finger guard (fused), PHAK1 instruction sheet
FG3	MBMH	100	1 finger guard, PHAK1 instruction sheet
FG3	All	150	1 finger guard, PHAK1 instruction sheet
FG3	AJ, AR, MQMJ, MEMX, QR, SP, PG, PP	250	1 finger guard, PHAK1 instruction sheet
FG4	MBMH, MGJ, MLI	250	1 finger guard, PHAK1 instruction sheet
FG4	All	350,500	1 finger guard, PHAK1 instruction sheet
FG4	AJ, AR, MQMJ, QR, SP, PP	750	1 finger guard, PHAK1 instruction sheet
FG5	$\mathrm{MBMH}, \mathrm{MEMX}, \mathrm{MGJ}, \mathrm{MLI} PG$,	750	1 finger guard, PHAK1 instruction sheet
FG5	All	1000,1500	1 finger guard, PHAK1 instruction sheet

SAMPLE ACCESSORY DRAWINGS

Sample Accessory Assembly Drawings

Sample Assembly Drawing for Voltage Link Installation

HPS Imperator
 Encapsulated Industrial Control Transformer

OVERCURRENT PROTECTION

Secondary

The overcurrent protection listed below, in amperes, is 125% of the rated current of the transformer. Choose the next higher fuse rating if these numbers do not correspond with standard fuse selections.

Sec.	VA Rating															
Voltage	25	50	75	100	150	200	250	300	350	500	750	1000	1500	2000	3000	5000
12	2.7	5.3	7.9	11	16	21	27	-	-	-	-	-	-	-	-	-
24	1.4	2.7	4.0	5.3	7.9	11	14	16	19	27	-	-	-	-	-	-
90	0.4	0.7	1.1	1.4	2.1	2.8	3.5	4.2	4.9	7.0	11	14	21	28	-	-
95	0.4	0.7	1.0	1.4	2.0	2.7	3.3	4.0	4.7	6.6	9.9	14	20	27	-	-
100	0.4	0.7	1.0	1.3	1.9	2.5	3.2	3.8	4.4	6.3	9.4	13	19	25	-	-
110	0.3	0.6	0.9	1.2	1.8	2.3	2.9	3.5	4.0	5.7	8.6	12	18	23	-	-
115	0.3	0.6	0.9	1.1	1.7	2.2	2.8	3.3	3.9	5.5	8.2	11	17	22	-	-
120	0.3	0.6	0.8	1.1	1.6	2.1	2.7	3.2	3.7	5.3	7.9	11	16	21	-	-
220	0.15	0.3	0.5	0.6	0.9	1.2	1.5	1.8	2.0	2.9	4.3	5.7	8.6	12	18	29
230	0.14	0.3	0.5	0.6	0.9	1.1	1.4	1.7	2.0	2.8	4.1	5.5	8.2	11	17	28
240	0.14	0.3	0.4	0.6	0.8	1.1	1.4	1.6	1.9	2.7	4.0	5.3	7.9	11	16	27

Primary

To assist in the selection of fuses, the following chart suggests the maximum primary fuse rating in amperes. The number shown is the maximum overcurrent protection when the primary current is less than 2 amps and the overcurrent protection device is rated for 300%. Choose the next higher fuse rating if these numbers do not correspond with standard fuse selections.

Pri.	VA Rating																
Volt	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{5 0 0}$	$\mathbf{7 5 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{2 0 0 0}$	3000	$\mathbf{5 0 0 0}$	$\mathbf{7 5 0 0}$
$\mathbf{1 1 5}$	0.6	1.25	1.8	2.5	3.5	5	4	5	5	8	10	15	20	25	-	-	-
$\mathbf{1 2 0}$	0.6	1.25	1.8	2.25	3.5	5	4	5	5	8	10	15	15	20	-	-	-
$\mathbf{2 0 0}$	0.3	0.75	1.125	1.5	2.25	3	3.5	4.5	5	4.5	7	9	15	15	20	-	-
$\mathbf{2 0 8}$	0.3	0.6	1	1.4	2	2.8	3.5	4	5	4	6	8	12	15	20	30	-
$\mathbf{2 2 0}$	0.3	0.6	1	1.25	2	2.5	3.2	4	4.5	4	6	8	12	15	20	30	-
$\mathbf{2 3 0}$	0.3	0.6	0.8	1.25	1.8	2.5	3.2	3.5	4.5	4	6	8	10	15	20	30	-
$\mathbf{2 4 0}$	0.3	0.6	0.8	1.25	1.8	2.25	3	3.5	4	3.5	5	7	10	15	15	30	-
$\mathbf{2 7 7}$	0.25	0.5	0.8	1	1.6	2	2.5	3.2	3.5	5	5	6	9	12	15	25	-
$\mathbf{3 4 7}$	0.25	0.5	0.8	1	1.6	2	2.5	3.2	3.5	5	6.25	5	7.5	10	15	20	30
$\mathbf{3 8 0}$	0.1875	0.3	0.5	0.75	1.125	1.5	1.8	2.25	2.5	3.5	5.6	4.5	6.25	9	15	20	25
$\mathbf{4 0 0}$	0.1875	0.3	0.5	0.75	1.125	1.5	1.8	2.25	2.5	3.5	5.6	4.5	6.25	9	12	15	20
$\mathbf{4 1 6}$	0.15	0.3	0.5	0.6	1	1.4	1.8	2	2.5	3.5	5	4	6	8	12	15	20
$\mathbf{4 4 0}$	0.15	0.3	0.5	0.6	1	1.25	1.6	2	2.25	3.2	5	4	6	8	12	15	20
$\mathbf{4 6 0}$	0.15	0.3	0.4	0.6	0.8	1.25	1.6	1.8	2.25	3.2	4.5	3.5	6	8	12	15	20
$\mathbf{4 8 0}$	0.15	0.3	0.4	0.6	0.8	1.25	1.5	1.8	2	3	4.5	3.5	5	7	10	15	20
$\mathbf{5 5 0}$	0.125	0.25	0.4	0.5	0.8	1	1.25	1.6	1.8	2.5	4	5	4.5	6	9	15	15
$\mathbf{5 7 5}$	0.125	0.25	0.3	0.5	0.75	1	1.25	1.5	1.8	2.5	3.5	5	4.5	6	9	15	15
$\mathbf{6 0 0}$	0.125	0.2	0.3	0.5	0.75	0.8	1.25	1.5	1.6	2.25	3.5	5	4	6	9	15	15

A
 Hammond Power Solutions

DIMENSIONAL DRAWINGS

Some actual transformer units may differ from dimensional drawings shown below.

FIGURE B (150 VA to 1500 VA)

Other Drive Solutions

HPS TruWave ${ }^{\text {тм }}$ Active Harmonic Filter

HPS TruWave ${ }^{\text {TM }}$ Active Harmonic Filter (AHF) is a comprehensive and flexible solution for harmonic mitigation. It provides advanced control and proven reliability that your facility needs to solve harmonic problems generated by non-linear loads such as variable frequency drives.

The AHF monitors load current and quickly responds to power system distortion as it develops. The AHF injects a corrective current to effectively cancel out harmonics produced by three phase non-linear loads. The result is a reduction in harmonic distortion to below 5%, complying with the IEEE-519 recommendations.

HPS Centurion ${ }^{\text {TM }}$ P Passive Harmonic Filter

HPS Centurion ${ }^{\text {TM }}$ P passive harmonic filter is specifically engineered to mitigate harmonic currents created by non-linear loads. It is currently available from 5 to 500 horsepower and it improves power quality by simultaneously reducing harmonics and improving true power factor. The advanced HPS design delivers superior performance compared to a traditional harmonic filter by reducing harmonic current distortion to less than 5%, corrects true power factor to over 95\%, and meets IEEE 519 harmonic requirements.

HPS Centurion P consists of reactors and capacitors in an LCL arrangement designed to reduce a broad range of harmonics associated with variable frequency drives and other three phase rectifiers.

HPS Centurion™ R Reactor

The HPS Centurion ${ }^{T M}$ R reactor provides a U.L. listed solution to many common drive issues.
Line reactor benefits:

- Minimizes harmonic current
- Attenuates voltage and current harmonics to reduce voltage notching
- Improves True Power Factor by reducing overall current distortion
- Mitigates drive nuisance tripping by attenuating voltage transients from sources such as PFCC, utility switching and lightning

When coordinated with a HPS TruWave Active Harmonic Filter, the system can reduce harmonics from variable frequency drives to under 5\% THD.

Load reactor benefits:

- Reduces the motor's operating temperature \& audible noise
- Mitigates motor bearing failures and insulation damage as a result of the reflected wave phenomenon
- Enhances the overall performance and life expectancy of the motor

dV/dT Filter

The HPS dV/dT filter provides protection for motors by slowing the rate of voltage increase and minimizing the peak voltage that occurs at the motor's terminals and along the cables feeding the motor.
It does this by combining the harmonic current limiting ability of an AC line reactor plus a resistive capacitance circuit that forms a damped, low pass filter.
HPS dV/dT filters are specifically designed for drive/motor applications with long lead lengths (usually where the motor cable length is 100 feet and greater).

Energy Efficient Drive Isolation Transformers

HPS Tribune ${ }^{\text {TM }}$ drive isolation transformers are suitable for both AC and DC variable speed drives. They are sized to match standard motor horsepower and voltage ratings.

Standard features include:

- Meets NRCan 2019
- Three phase ratings from 7 kVA to 660 kVA
- Available in aluminum, copper and optional shield
- UL Listed and CSA Certified
- Type 3R enclosure (optional Type 4, 12 or stainless)

HPS Multi-Pulse Transformer

Multi-Pulse transformers are designed specifically for harmonics, voltage distortion and other unique characteristics associated with individual manufacturer's drive systems. They provide the required supply voltage with the desired phase angle between secondary voltages for VFD systems/converters.

- HPS has significant experience with 18, 24, 36, 48 pulse drive/inverter duty transformers and auto-transformers in both low and medium voltage applications.

Typical Drive Current Waveforms

6 Pulse Rectifier

18 Pulse Rectifier

ATE
 Hammond
 Power Solutions

CANADA
Hammond Power Solutions
595 Southgate Drive
Guelph, Ontario N1G 3W6
Tel: (519) 822-2441
Fax: (519) 822-9701
Toll Free: 1-888-798-8882
sales@hammondpowersolutions.com

MEXICO

Hammond Power Solutions
Av. No. 800, Parque Industrial Guadalupe Guadalupe, NL, Mexico, C.P. 67190.
Tel: (819) 690-8000
sales@hammondpowersolutions.com

UNITED STATES
Hammond Power Solutions
1100 Lake Street
Baraboo, Wisconsin 53913-2866
Tel: (608) 356-3921
Fax: (608) 355-7623
Toll Free: 1-866-705-4684
sales@hammondpowersolutions.com

ASIA

Hammond Power Solutions Pvt. Ltd.
D. No. 5-2/222/IP/B, II-Floor, Icon Plaza

Allwyn X-Roads, Miyapur, Hyderabad 500049
Tel: +91-994-995-0009
marketing-india@hammondpowersolutions.com

EMEA (Sales Office)
Hammond Power Solutions SpA
Tel: +49 (152) 08800468
sales-emea@hammondpowersolutions.com

Literature No.: ENCCON
Issue Date: November 2021

