## Downlighting

## by ©()ignify

## LytePoints 3 3/4"

## 378X Adjustable Elbow MR16



Complete fixture consists of Reflector Trim \& Power Pack. Select each separately.

| Reflect | rim | Frame-In |  | Lamp |
| :---: | :---: | :---: | :---: | :---: |
| 378STX | Stainless Steel Plated | Remodeler | 300MRSPX | 50W MR16 |
| 378WHX | White Paint | Remodeler | 3401MREX | 50W MR16 |
| 378ВКX | Black Paint | Remodeler | 303MRE* | 37W MR16 |
|  |  | Non-IC | 302MRSPX | 50W MR16 |
|  |  | Non-IC | 302MREX | 50W MR16 |
|  |  | IC | 302MRIC9SPX | 37W MR16 |
|  |  | IC | 302MRIC7SPX | 37W MR16 |
|  |  | Airseal / IC | 302MRAICSPX | 50W MR16 |
|  |  | Airseal / IC | 302MRAICEX | 50W MR16 |
|  |  |  | *Certified for wal | 303MRE with 37W MR16 |

## Features

1. Flange: Die-cast aluminum .070" $(2 \mathrm{~mm})$ thick.
2. Elbow Housing: Die-Cast aluminum; provides $358^{\circ}$ horizontal rotation and $0^{\circ}$ to $70^{\circ}$ vertical adjustment. Retracts to provide fully recessed downlight. $85^{\circ}$ vertical adjustment. Retracts to provide fully recessed downlight.
3. Mounting Clips (2): 24ga. spring steel, zinc plated. Provide easy snap-in / snap out action.
4. Lamp Guard: 1 3/4" (45mm) dia. borosilicate glass.

## Frame-In Kit

Note: For complete Frame-In Kit specifications, see 300 frame specification sheets.

## Labels

CSA, UL Suitable for damp locations.

## 378X LytePoints 3 3/4"

Adjustable Elbow MR16



MR-16 LOW VOLTAGE HALOGEN BI-PIN LAMPS

| $\begin{gathered} \sum 2 \\ 20 N M R-16 \\ \text { VNSP } E(E X) \end{gathered}$ | $1$ | 8210 | 3140 | $\begin{aligned} & 7 \\ & 10^{\prime} \\ & 13^{\prime} \\ & 16^{\prime} \end{aligned}$ | $\begin{aligned} & 167 \\ & 82 \\ & 49 \\ & 32 \end{aligned}$ | $\begin{aligned} & \hline 09^{\prime} \\ & 12 \\ & 16^{\prime} \\ & 20^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 6^{\prime} \\ & 1.2^{\prime} \\ & 1 . \varepsilon^{\prime} \\ & 2.6^{\prime} \end{aligned}$ | $\begin{gathered} \mathrm{h}^{\prime} \\ \mathrm{g}^{\prime} \\ 12 \\ 12^{\prime} \end{gathered}$ | $\begin{aligned} & 3.5^{\prime} \\ & 5.7^{\prime} \\ & 6.9 \\ & 8.7^{\prime} \end{aligned}$ | $\begin{aligned} & 148 \\ & 66 \\ & 37 \\ & 24 \end{aligned}$ | $\begin{aligned} & 1.0^{\prime} \\ & 1.5^{\prime} \\ & 2.0^{\prime} \\ & 2.3^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 0 . .^{\prime} \\ & 1.3^{\prime} \\ & 1.7^{\prime} \\ & 2.1^{\prime} \\ & \hline \end{aligned}$ | 7 7 3 4 5 5 | $\begin{aligned} & \hline 35 . \\ & 5.2 \\ & 6.9 \\ & 8.9 \end{aligned}$ | $\begin{aligned} & 256 \\ & 114 \\ & 64 \\ & 41 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.7^{\prime} \\ & 10 \\ & 1.2^{\prime} \end{aligned}$ | $\begin{aligned} & 4^{4} \\ & 8^{\circ} \\ & 8^{0} \end{aligned}$ | $\begin{gathered} 4.0 \\ 5.0 \\ 8.0 \\ 10.0 \end{gathered}$ | $\begin{aligned} & \hline 181 \\ & 81 \\ & 45 \\ & 29 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 07 \\ & 1.0^{\prime} \\ & 1.4^{\prime} \\ & 1 . \gamma^{\prime} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{20 W \operatorname{ARR}-16 \\ N S P(E S X i}}{M}$ | $A_{13^{\circ}}$ | 3600 | 3000 | $\begin{aligned} & 6^{\prime} \\ & 8^{\prime} \\ & 10^{\prime} \\ & 12^{\prime} \end{aligned}$ | $\begin{aligned} & 56 \\ & 35 \\ & 25 \end{aligned}$ | $\begin{aligned} & \hline 14^{\prime} \\ & 1.81 \\ & 2.3 \\ & 2.7 \end{aligned}$ | $\begin{aligned} & 4 \\ & 1.8 \\ & 2.3 \\ & 2.7 \end{aligned}$ | 5 7 9 9 11 | $\begin{aligned} & 29 \\ & 4.0^{\circ} \\ & 5.2 \\ & 6.4 \end{aligned}$ | $\begin{aligned} & 94 \\ & 48 \\ & 29 \\ & 19 \end{aligned}$ | $\begin{aligned} & 1.55^{\circ} \\ & 2.1 \\ & 2.7 \\ & 3.4 \end{aligned}$ | $\begin{aligned} & 13 \\ & 1.8 \\ & 2.4 \\ & 2.9 \end{aligned}$ | 3'1 $4^{\prime}$ 5 5 | $\begin{aligned} & \begin{array}{l} 3.5 \\ 5.2 \\ \hline 6.9 \\ 8.7 \end{array} . \begin{array}{l}  \\ \hline \end{array}{ }^{2} \end{aligned}$ | $\begin{aligned} & 113 \\ & 58 \\ & 28 \\ & 18 \end{aligned}$ | $\begin{aligned} & 1.99^{\prime} \\ & 280^{\prime} \\ & 3.7^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 1.4 \\ & 1.8 \\ & 23 \end{aligned}$ | $\begin{aligned} & \hline 3^{\prime} \\ & 5^{\prime} \\ & 7 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 5.0 \\ & 7.0 \\ & 9.0 \end{aligned}$ | $\begin{aligned} & 141 \\ & 51 \\ & 26 \\ & 16 \\ & \hline 16 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 2.3 \\ & 3.2^{\prime} \\ & 4.2^{\prime} \end{aligned}$ | $\begin{aligned} & 1.0^{2} \\ & 1.6 \\ & 2.3 \\ & 2.9 \end{aligned}$ |
| $\underset{\substack{\text { 2OWMR } \\ \text { FLBABI }}}{\substack{\text { BAB }}}$ | $\bigwedge_{40^{\circ}}$ | 525 | 4030 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 131 \\ & 58 \\ & 33 \\ & 21 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 2.2^{2} \\ & 2.9 \\ & 3.7 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 22^{\prime} \\ & 2.9^{\prime} \\ & 3.6^{\circ} \end{aligned}$ | $\begin{aligned} & 2^{\prime} \\ & 3 \\ & 4^{\prime} \\ & 5^{\prime} \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.7 \\ & 73 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & 35 \\ & 33 \\ & 71 \\ & 14 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 30 \\ & 4.1 \\ & 5.1 \end{aligned}$ | $\begin{aligned} & 1.7 \\ & 25 \\ & 3.4 \\ & 4.2 \end{aligned}$ | 1 <br> $2^{\prime}$ <br> $3^{\prime}$ <br> $4^{\prime}$ | $\begin{aligned} & 7.7 \\ & 3.5 \\ & 5.2 \\ & 6.9 \end{aligned}$ | $\begin{gathered} \hline 66 \\ 16 \\ 7 \\ 7 \\ 4 \end{gathered}$ | $\begin{aligned} & 9.8 \\ & \hline .8 \\ & 14.5 \\ & 19.5 \end{aligned}$ | $\begin{aligned} & \hline 15^{\prime} \\ & 2.9^{\prime} \\ & 4.4 \\ & 58^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 2 \\ & \hline 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | $\begin{aligned} & 2.0^{\prime} \\ & 3.0^{\prime} \\ & 4.0^{\prime} \end{aligned}$ | $\begin{aligned} & 46 \\ & 21 \\ & 12 \\ & 7 \end{aligned}$ | $\begin{aligned} & 3.4^{\prime} \\ & 5.0 \\ & 6.7 \\ & 8.4 \end{aligned}$ | $\begin{aligned} & 2.1 \\ & 3 . \\ & 4.1 \\ & 5.1 \end{aligned}$ |
|  | $A_{12}$ | 870 | 4009 | 7 <br> 10 <br> 10 <br> 76 <br> 6 | $\begin{aligned} & \hline 178 \\ & 87 \\ & 61 \\ & 34 \end{aligned}$ | $\begin{aligned} & 1.5^{2} \\ & 2 \% \\ & 2.7 \\ & 3.4 \end{aligned}$ | $\begin{aligned} & 1.5^{\prime} \\ & 2.1^{\prime} \\ & 2.7 \\ & 3.4^{\prime} \end{aligned}$ | $\begin{aligned} & E^{\prime} \\ & 9^{\prime} \\ & 1 x^{\prime} \\ & 15^{\prime} \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 35^{\prime} \\ 5.7^{\prime} \\ 6.9^{\prime} \\ 8.7 \end{array} \end{aligned}$ | $\begin{aligned} & 157 \\ & 70 \\ & 34 \\ & 25 \end{aligned}$ | $\begin{aligned} & 1.7 \\ & 2.5 \\ & 3.4 \\ & 4.2 \end{aligned}$ | $\begin{aligned} & 1.5^{\prime}{ }^{\prime} \\ & 2.2^{\prime} \\ & 3.6{ }^{\prime} \end{aligned}$ | 7 3 4 4 5 5 | $\begin{aligned} & 35 \\ & 5.7 \\ & 5.8 \\ & 6.7 \\ & 6.7 \end{aligned}$ | $\begin{aligned} & 272 \\ & 121 \\ & 6.3 \\ & 44 \end{aligned}$ | $\begin{aligned} & 1.7 \\ & 2.6 \\ & 3.5 \\ & 43 \\ & \hline \end{aligned}$ | $\begin{aligned} & 08^{\prime} \\ & 13^{\prime} \\ & 17 \\ & 21^{\prime} \end{aligned}$ | $\begin{gathered} \hline 4 \\ 6 \\ 8 \\ 10 \\ \hline \end{gathered}$ | $\begin{aligned} & 40 \\ & 6.0 \\ & 8.0 \\ & 80 . \end{aligned}$ | $\begin{aligned} & \hline 192 \\ & 85 \\ & 48 \\ & 31 \end{aligned}$ | $\begin{aligned} & 9.7^{\prime} \\ & 2.8^{\prime} \\ & 3.4 \\ & 4.3 \end{aligned}$ | $\begin{aligned} & 1 . \mathrm{P}^{\prime} \\ & 1.8^{\prime} \\ & 2.0^{\prime} \end{aligned}$ |
|  | $M_{20^{\prime}}$ | 3900 | 4000 | $\begin{aligned} & 64 \\ & 8 \\ & 10 \\ & 10 \\ & \hline 10 \end{aligned}$ | $\begin{aligned} & \hline 108 \\ & 61 \\ & 39 \\ & 27 \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 2.1^{\prime} \\ 2.8 \\ 3.5 \\ 3.2^{\prime} \end{array} \end{aligned}$ | $\begin{aligned} & 2.1^{\prime} \\ & 2 . \varepsilon^{\prime} \\ & 3 . .^{\prime} \\ & 4 . \mathbf{P}^{\prime} \end{aligned}$ | $\begin{aligned} & \hline{ }^{5} \\ & 7 \\ & 9 \\ & 9^{\prime} \end{aligned}$ | $\begin{aligned} & 29 \\ & 4 . C^{\prime} \\ & 57^{\prime} \\ & 6 e^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 101 \\ & 52 \\ & 31 \\ & 31 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.44^{\prime} \\ & 3.3 \\ & 4.3 \\ & 5 .{ }^{2} \end{aligned}$ | $\begin{aligned} & 2.3 \\ & 2.9 \\ & 3.7 \\ & 4 . \end{aligned}$ | 2 3 $3^{\prime}$ $4^{\prime}$ 5 | $\begin{aligned} & 3.5 \\ & 5.2^{\prime} \\ & 6.9^{\prime} \\ & 8.7 \\ & \hline \end{aligned}$ | $\begin{aligned} & 122 \\ & 54 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 4.7 \\ & 6.2 \\ & 7.8 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 21 \\ & 28 \\ & 3.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3 \\ & \hline 5^{\prime} \\ & 7^{\prime} \\ & 9^{\prime} \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 5.0^{0} \\ & 7.0 \\ & 9.0^{\circ} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 153 \\ 55 \\ 28 \\ 17 \\ \hline \end{gathered}$ | $\begin{aligned} & 2.2 \\ & 3.5^{\prime} \\ & 5.1^{\prime} \\ & 6.8^{\prime} \end{aligned}$ | $\begin{aligned} & 1.5^{\prime} \\ & 2.55^{\prime} \\ & 3.5^{\prime} \\ & 4.5^{\prime} \\ & \hline \end{aligned}$ |
|  | $A$ | reve | 4000 | $\begin{gathered} 4 \\ 6 \\ 8 \\ 8 \\ 10 \\ \hline \end{gathered}$ | $\begin{aligned} & 100 \\ & 14 \\ & 25 \\ & 16 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.9^{\prime} \\ & 4.4^{\prime} \\ & 5.8^{\prime} \\ & 7.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.9^{\prime} \\ & 4.4^{\prime} \\ & 5.8^{\prime} \\ & 7 .{ }^{\prime} \end{aligned}$ | $\begin{aligned} & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.7^{\prime} \\ & 299^{\circ} \\ & 40 . \\ & 5.8 \end{aligned}$ | $\begin{aligned} & 115 \\ & 42 \\ & 21 \\ & 13 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3 . C^{\prime} \\ & 5.1 \\ & 7.1 \\ & 9.1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.5^{\prime}{ }^{\prime} \\ & 42^{\prime} \\ & 5.8^{\prime \prime} \\ & 1 .{ }^{\prime} \end{aligned}$ | $\stackrel{7}{3}$ | $\begin{aligned} & 1.7^{\prime} \\ & 3.5 \\ & 5.2^{\prime} \\ & 8.9^{\prime} \end{aligned}$ | $\begin{aligned} & 200 \\ & 50 \\ & 22 \\ & 13 \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.88^{2} \\ & 9.7 \\ & 14.5 \\ & 19.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.5^{\prime} \\ & 2.9 \\ & 4.4^{\prime} \\ & 5.6^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3^{\prime} \\ & 4^{\prime} \\ & 5^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.0^{\prime} \\ & 50^{\circ} \\ & 6.0^{\circ} \end{aligned}$ | $\begin{aligned} & 67 \\ & 35 \\ & 23 \\ & 16 \\ & \hline \end{aligned}$ | $\begin{gathered} 50 \\ 6.7 \\ 8.4^{\prime} \\ 10.1^{\prime} \\ \hline \end{gathered}$ | $\begin{aligned} & 3.1^{\prime} \\ & 1.1^{\prime} \\ & 5.1^{\prime} \\ & 6.2^{\prime} \end{aligned}$ |
|  | $\underset{10^{\circ}}{A}$ | 11500 | 400 C | $\begin{aligned} & \hline 6 \\ & 12 \\ & 16 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{aligned} & 180 \\ & 80 \\ & 45 \\ & 29 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 2.1 \\ & 2.8 \\ & 3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 . a^{\prime} \\ & 2.1 \\ & 2.8 \\ & 3.5 \end{aligned}$ | 10 <br> 13 <br> 16 | $\begin{aligned} & 4.0^{\prime} \\ & 5.8 \\ & 75 \\ & 92^{\prime} \end{aligned}$ | $\begin{aligned} & 152 \\ & 76 \\ & 44 \\ & 29 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 2.3 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.4^{\prime} \\ & 2.0 \\ & 2.8^{\prime \prime} \\ & 3 \end{aligned}$ | $\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \\ & B^{\prime} \end{aligned}$ | $\begin{gathered} 5.2^{\prime} \\ 5.9 \\ 3.7^{\prime} \\ 10 . \mathbf{'}^{\prime} \end{gathered}$ | $\begin{aligned} & 190 \\ & 99 \\ & 58 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.1 \\ & 2.9 \\ & 3.6 . \\ & 4.3^{2} \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.7 \\ & 2.1 \\ & \hline \end{aligned}$ | $\begin{gathered} 7 \\ 9 \\ 9 \\ \hline 11 \end{gathered}$ | $\begin{aligned} & 5.0 \\ & 7.0 \\ & 0.0 \\ & 11.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 183 \\ & 83 \\ & 50 \\ & 34 \\ & \hline \end{aligned}$ | $\begin{aligned} & 188^{\prime} \\ & 2.5 \\ & 3.2 \\ & 3.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.7 \\ & 2.2 \\ & 2.7 \\ & \hline \end{aligned}$ |
| $\underset{\substack{37 W M R-16 \\ \operatorname{RR}(N F L i}}{C N}$ | $\lambda$ | 3500 | 4000 | $\begin{aligned} & 8^{\prime} \\ & 8^{\prime} \\ & 10^{\prime} \\ & 12^{\prime} \end{aligned}$ | $\begin{aligned} & 97 \\ & 55 \\ & 35 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & 27^{\prime} \\ & 3.5^{\prime} \\ & 4.4 \\ & 5.3 \end{aligned}$ | $\begin{aligned} & 2.7 \\ & 3.5 \\ & 4.4 \\ & 5.3^{\prime} \end{aligned}$ | 7 <br> 9 <br> 11 <br> 1 | $\begin{aligned} & 2.9 \\ & 4.0 \\ & 57 \\ & 6.4 \end{aligned}$ | $\begin{aligned} & 91 \\ & 46 \\ & 28 \\ & 19 \end{aligned}$ | $\begin{aligned} & 3.0^{\circ} \\ & 4.2^{\prime} \\ & 5.4^{\prime} \\ & 6.6^{\prime} \end{aligned}$ | $\begin{aligned} & 26 \\ & 3.6 \\ & 46 \\ & 56 \\ & 56 \end{aligned}$ | $\begin{aligned} & \hline 2^{\prime} \\ & 3^{\prime} \\ & \mathbf{5}^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 5 \% \\ & 6.9 \\ & 8.7 \end{aligned}$ | $\begin{aligned} & 109 \\ & 49 \\ & 27 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.2 \\ & 6.2 \\ & 8.3 \\ & 10.4 \end{aligned}$ | $\begin{aligned} & 1.8^{\prime} \\ & 2.7 \\ & 3.5 \\ & 4.4 \\ & \hline \end{aligned}$ | 3 5 7 7 | $\begin{aligned} & 3.0 \\ & 5.0 \\ & 7.0 \\ & 9.0 \end{aligned}$ | $\begin{aligned} & 137 \\ & 49 \\ & 25 \\ & 15 \\ & \hline \end{aligned}$ | $\begin{aligned} & 28 \\ & 47 \\ & 6.5 \\ & 8.4 \end{aligned}$ | $\begin{aligned} & 199^{\prime} \\ & 3.1 \\ & 4.4 \\ & 5.6 \\ & \hline \end{aligned}$ |
| 37MMR-16 | $\bigwedge_{40^{\circ}}$ | 2053 | 4000 | $\begin{aligned} & 4^{\prime} \\ & \varepsilon^{\prime} \\ & \varepsilon^{\prime} \\ & 10 \end{aligned}$ | $\begin{aligned} & 128 \\ & 57 \\ & 32 \\ & 21 \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.8 \\ & 5.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.8 \\ & 7.8 \\ & \hline \end{aligned}$ | 5 7 | $\begin{aligned} & 17 \\ & 2.9 \\ & 4.0^{\prime} \\ & 5.2 \end{aligned}$ | $\begin{gathered} 148 \\ 5.3 \\ 27 \\ 10 \\ \hline \end{gathered}$ | $\begin{aligned} & 3.0^{\prime} \\ & 5.1^{\prime} \\ & 7.1^{\prime} \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 4.2 \\ & 5.9 \\ & 7.6^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.7 \\ & 3.5 \\ & 5.2 \\ & 6.9 \end{aligned}$ | $\begin{aligned} & \hline 58 \\ & 64 \\ & 23 \\ & 15 \\ & \hline \end{aligned}$ | $\begin{aligned} & 48 \\ & 9.9 \\ & 9.5 \\ & 14.5 \\ & 15.3 \end{aligned}$ | $\begin{aligned} & \hline 15 \\ & 2.9^{\prime} \\ & 4.4^{\prime} \\ & 5.8^{\prime} \end{aligned}$ | $4$ | $\begin{aligned} & 3.0 \\ & 4.0 \\ & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 81 \\ & 45 \\ & 29 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.0^{\prime} \\ & 6.7^{\prime} \\ & 8.4 \\ & 10.1 \end{aligned}$ | $\begin{aligned} & 311 \\ & 4.1 \\ & 5.1 \\ & 6.2 \end{aligned}$ |
| $\underset{\substack{\text { 42WMF. } \\ \text { VNSP }(E Z Y)}}{\frac{\mathrm{M}}{2}}$ | $9$ | 13100 | 3500 | $\begin{aligned} & \hline 8^{\prime} \\ & 12^{\prime} \\ & 16 \\ & 7 \mathbf{a}^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 205 \\ & 91 \\ & 51 \\ & 33 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.3 \\ & 1.9 \\ & 2.5 \\ & 3.1 \end{aligned}$ | $\begin{aligned} & 13 \\ & 19 \\ & 2.5 \\ & 3 . \end{aligned}$ | $\begin{aligned} & 1 \\ & 10 \\ & 10 \\ & 18^{\prime} \\ & 18^{\prime} \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 5.8 \\ & 7.5 \\ & 92 \end{aligned}$ | $\begin{aligned} & 174 \\ & 84 \\ & 50 \\ & 30 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 2.1^{\circ} \\ & 2.7 \\ & 3.4 \end{aligned}$ | $\begin{aligned} & 1.3^{\prime} \\ & 1.8 \\ & 2.8^{2} \\ & 2.8 \end{aligned}$ |  | $\begin{aligned} & 5.2 \\ & 6.9^{\prime} \\ & 8.7^{\prime} \\ & 10.4 \end{aligned}$ | $\begin{aligned} & \hline 182 \\ & 102 \\ & 66 \\ & 45 \end{aligned}$ | $\begin{aligned} & 1.90^{\circ} \\ & 2.6^{\circ} \\ & 38^{\prime} \end{aligned}$ | $\begin{aligned} & 0.9^{\prime} \\ & 1.3^{\prime} \\ & 1.9^{\prime} \\ & 1 .{ }^{\prime} \end{aligned}$ | \% <br> $9^{\prime}$ <br> 11 <br> 1 | $\begin{gathered} 50 \\ 70 \\ 9.0 \\ 110 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 83 \\ & 95 \\ & 57 \\ & 38 \\ & \hline \end{aligned}$ | $\begin{aligned} & .6 \\ & 2.2 \\ & 2.8 \\ & 2.8 \\ & 35^{\prime} \end{aligned}$ | $\begin{aligned} & 11 \\ & 10 \\ & 2.0 \\ & 2.4 \\ & 2.4 \end{aligned}$ |
| $\begin{gathered} C= \\ \text { 4NMP. } 15 \\ \text { NG (EYSI } \end{gathered}$ | $M_{27}$ | 2400 | 4000 | $\begin{aligned} & 7 \\ & 5^{7} \\ & 5^{5} \\ & 8^{2} \end{aligned}$ | $\begin{aligned} & 156 \\ & 67 \\ & 38 \\ & 24 \end{aligned}$ | $\begin{aligned} & 1.9^{\prime} \\ & 2.9^{\prime} \\ & 3.8^{\prime} \\ & 4.8^{\prime} \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 2.9 \\ & 3.3 \\ & 4.8 \end{aligned}$ | $\begin{aligned} & \mathbf{3}^{\prime} \\ & 5^{\prime} \\ & y^{\prime} \end{aligned}$ | $\begin{aligned} & 1,7 \\ & 79 \\ & 4.0 \\ & 5.7 \end{aligned}$ | $\begin{aligned} & 173 \\ & 52 \\ & 32 \\ & 19 \end{aligned}$ | $\begin{aligned} & 2.0^{\prime} \\ & 3.3^{\prime} \\ & 4.6^{\prime} \\ & 5.9 \end{aligned}$ | $\begin{aligned} & 1.7^{\prime} \\ & 28^{\prime} \\ & 39^{\prime} \end{aligned}$ | 2 3 4 | $\begin{aligned} & 1.3^{\prime} \\ & 35^{\prime} \\ & 5.2^{\prime} \\ & 6.9^{\prime} \end{aligned}$ | $\begin{aligned} & 300 \\ & 75 \\ & 33 \\ & 19 \end{aligned}$ | $\begin{aligned} & 22^{\prime} \\ & 4.6^{\prime} \\ & 7.9^{\prime} \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 1.9 \\ & 2.9 \\ & 3.6 \end{aligned}$ | 3 4 4 | $\begin{aligned} & \hline 30 \\ & 4 . C^{\prime} \\ & 5 . C^{\prime} \\ & 6.0^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 54 \\ & 53 \\ & 34 \\ & 24 \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 9.1^{\prime} \\ & 5.1 . \\ & 6.1^{\prime} \end{aligned}$ | $\begin{aligned} & 29 . \\ & 2.7 \\ & 3.4^{\prime} \\ & 4.1^{\prime} \end{aligned}$ |
|  | $\hat{14}_{14}$ | 15,200 | 4000 | $\begin{aligned} & q^{*} \\ & 1 \underline{12} \\ & 1 \tilde{T} \\ & 2 T \end{aligned}$ | $\begin{aligned} & 159 \\ & 51 \\ & 40 \\ & 20 \end{aligned}$ | $\begin{aligned} & \hline 20^{\prime} \\ & 2.9^{\prime} \\ & 3.8^{\prime} \\ & 4.99^{\prime} \end{aligned}$ | $\begin{aligned} & 20 \\ & 2.9 \\ & 3.9 \\ & 4.3 \end{aligned}$ | $\begin{aligned} & \hline 7 \\ & 10 \\ & 13 \\ & 15 \end{aligned}$ | $\begin{aligned} & 4.0^{\prime} \\ & 57 \\ & 7.7 \\ & 9.2 \end{aligned}$ | $\begin{aligned} & 135 \\ & \hline 60 \\ & 39 \\ & 28 \end{aligned}$ | $\begin{aligned} & 2.3^{\prime} \\ & 3.3 \\ & 4.3 \\ & 5.3 \end{aligned}$ | $\begin{aligned} & 2.0^{\prime} \\ & 2.8^{\prime} \\ & 3.7 \\ & 4.5 \end{aligned}$ | 3 <br> 4 <br> 4 <br> 5 <br> 5 <br> 5 | $\begin{aligned} & \hline 52^{\prime} \\ & 6.9^{\prime} \\ & 87 \\ & 304^{\circ} \end{aligned}$ | $\begin{aligned} & 142 \\ & 90 \\ & 51 \\ & 51 \\ & 35 \end{aligned}$ | $\begin{aligned} & 3.1^{\prime} \\ & 4.1^{\prime} \\ & 5.1^{\prime} \\ & 6.2^{\prime} \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 2.0^{\prime} \\ & 2.5 \\ & 2.9 \end{aligned}$ | 5 7 9 9 10 | $\begin{gathered} 5.0^{\circ} \\ 7.0 \\ 9.0^{\circ} \\ 110^{\circ} \end{gathered}$ | $\begin{aligned} & 194 \\ & 74 \\ & 45 \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 3.5 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 1.2^{\circ} \\ & 2.4^{\circ} \\ & 3.1 \\ & 3.8^{\circ} \end{aligned}$ |
| $\underset{\substack{\operatorname{Sow}=\mathrm{MF}-16 \\ \mathrm{NFL}(\mathrm{FX})}}{\mathrm{A}}$ | ${ }_{27}^{1}$ | 3400 | 4060 | $6{ }^{\prime}$ <br> 8 <br> 10 <br> 10 <br> 12 | $\begin{aligned} & \mathbf{9 4} \\ & \mathbf{5 3} \\ & 34 \\ & 34 \end{aligned}$ | $\begin{aligned} & 2.9^{\prime} \\ & 3.8^{\prime} \\ & 4.8 \\ & 58 \end{aligned}$ | $\begin{aligned} & 2.28 \\ & 3.8^{\prime} \\ & 4.8^{\prime} \\ & 5.8^{\prime} \end{aligned}$ | $\begin{gathered} 5^{\prime} \\ 7^{\prime} \\ 9^{\prime} \\ 11^{\prime} \end{gathered}$ | $\begin{aligned} & 2.9^{\circ} \\ & 4.0^{\prime} \\ & 5.2^{\prime} \end{aligned}$ | $\begin{aligned} & 88 \\ & 45 \\ & 47 \\ & 18 \\ & \hline 1 \end{aligned}$ | $\begin{aligned} & 3.33^{\circ} \\ & 4.0^{\circ} \\ & 5.9^{\prime} \\ & 7{ }^{2} \end{aligned}$ | $\begin{aligned} & \overline{2.8} \\ & 3.9 \\ & 5.0 \\ & 6.0^{\prime} \end{aligned}$ | 2 $3^{\prime}$ $4^{\prime}$ 5 5 | $\begin{aligned} & 3.5^{\prime} \\ & 5.2^{\prime} \\ & 6.9^{\prime} \\ & 3.7^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 106 \\ & 47 \\ & 27 \\ & 17 \end{aligned}$ | $\begin{aligned} & 9.6 \\ & 7.0^{\prime} \\ & 31.0^{\prime} \\ & 11.6^{\prime} \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 2.9 \\ & 3.6^{\prime} \\ & 4.8^{\prime} \end{aligned}$ | $\begin{aligned} & 5 \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3.0^{\prime} \\ & 5.0^{\prime} \\ & 7.0^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 134 \\ & 48 \\ & 25 \\ & 15 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.1^{\prime} \\ & 5.1^{\prime} \\ & 7 . \\ & 8 .{ }^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 2.3^{\prime} \\ & 34^{\prime} \\ & 48^{\prime} \\ & 6.1^{\prime} \end{aligned}$ |
|  | $\Lambda$ | 1850 | 4000 | $\begin{aligned} & 4^{\prime} \\ & \mathbf{5}^{\prime} \\ & \mathbf{8}^{\prime} \\ & 10^{\prime} \end{aligned}$ | $\begin{aligned} & 116 \\ & 51 \\ & 29 \\ & 19 \end{aligned}$ | $\begin{aligned} & 29^{\prime} \\ & 44^{\prime} \\ & 58^{\prime} \\ & 73 \end{aligned}$ | $\begin{aligned} & 2.9^{\prime \prime} \\ & 41^{\prime} \\ & 5.8^{\prime} \end{aligned}$ | $\begin{aligned} & 3^{\prime} \\ & 5^{\prime} \\ & 7 \\ & 9 \\ & 9 \end{aligned}$ | $\begin{aligned} & 1.7 \\ & 2.9 \\ & 4.0 \\ & 5.7 \end{aligned}$ | $\begin{aligned} & 134 \\ & 48 \\ & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & 3.0^{\circ} \\ & 5.9^{\prime} \\ & 7.1^{\prime} \\ & 9.1 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 4.7 \\ & 5.9 \\ & 7.6 \end{aligned}$ | 1 <br> $1^{\prime}$ <br> $3^{\prime}$ <br> $3^{\prime}$ <br> 4 | $\begin{aligned} & 17^{\prime} \\ & 35^{\prime} \\ & 5.2^{\prime} \\ & 6.9 \end{aligned}$ | $\begin{aligned} & 231 \\ & 58 \\ & 26 \\ & 14 \end{aligned}$ | $\begin{gathered} 9.8^{\prime} \\ 97 \\ 14.5 \\ 19.3^{\prime} \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 2.9 \\ & 4.4^{\prime} \\ & 5.8^{\prime} \end{aligned}$ | 4 <br> $5^{\prime}$ <br> $5^{\prime}$ | $\begin{aligned} & \hline 3.0^{\prime} \\ & 4.0^{\prime} \\ & 5.0^{\circ} \\ & 6.0^{\prime} \end{aligned}$ | $\begin{aligned} & 73 \\ & 43 \\ & 26 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 50^{\prime} \\ & 6.7 \\ & 8.4 \\ & 10.1 \end{aligned}$ | $\begin{aligned} & \hline 3 .{ }^{\circ} \\ & 4.1^{\prime} \\ & 5.2^{2} \end{aligned}$ |
| $\sum_{\substack{\text { SOW MR- } 16 \\ \text { WFL SFNV }}}^{\sum C}$ | $\widehat{5}$ | 1150 | 4000 | $\begin{aligned} & \hline 3^{\prime} \\ & 5^{\prime} \\ & 9^{\prime} \end{aligned}$ | $\begin{aligned} & 12 E \\ & 46 \\ & 23 \\ & 14 \end{aligned}$ | $\begin{aligned} & 3.1^{\prime} \\ & 5.2 \\ & 7.3 \\ & 9.4 \end{aligned}$ | $\begin{aligned} & 3.1^{\prime} \\ & 5.2 \\ & 7.3 \\ & 9.4 \end{aligned}$ | $\begin{aligned} & 3^{7} \\ & 5^{\prime} \\ & 7 \\ & y^{\prime} \end{aligned}$ | $\begin{aligned} & 17 \\ & 2.9 \\ & 4.0 \\ & 5.2 \end{aligned}$ | $\begin{aligned} & 83 \\ & 30 \\ & 15 \\ & 9 \end{aligned}$ | $\begin{aligned} & 9.6^{\circ} \\ & 7.6^{\circ} \\ & 107 \\ & 13.7 \end{aligned}$ | $\begin{aligned} & 3.6^{\circ} \\ & 6.0 \\ & 8.4 \\ & 10.8^{\prime} \end{aligned}$ | 1 <br> $1^{1}$ <br> 3 <br> 3 <br> 4 <br> 4 | $\begin{aligned} & 1.7^{\prime} \\ & 3.5^{\prime} \\ & 5.2^{\prime} \\ & 6 .{ }^{\prime} \end{aligned}$ |  | $\begin{aligned} & 22.3^{\prime} \\ & \hline 4.5 \\ & 66 . .^{\prime} \\ & 89.1^{\prime} \end{aligned}$ | $\begin{aligned} & 2.1 \\ & 4.7 \\ & 6.7 \\ & 8 . x^{\prime} \\ & \hline \end{aligned}$ | 2 3 4 | $\begin{aligned} & 2 . \mathrm{C}^{\prime} \\ & 3 . \mathrm{C}^{\prime} \\ & 4 . \mathrm{C}^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 02 \\ & 45 \\ & 25 \\ & 16 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 5.7 \\ & 8.6 \\ & 11.4 \\ & 143 \\ & \hline \end{aligned}$ | $\begin{array}{r} 7.9 \\ 4.4^{\prime} \\ 5.9 \\ 7.4^{\prime} \\ \hline \end{array}$ |
| $\sum_{\substack{\text { 73 MR- } \\ S P}}^{M}$ | $A$ | 14050 | 4000 | $\begin{aligned} & 8^{\prime} \\ & 12 \\ & 16^{\prime} \\ & 20^{\prime} \end{aligned}$ | $\begin{aligned} & 219 \\ & 97 \\ & 55 \\ & 35 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 2.1^{\prime} \\ & 2.8 \\ & 3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 14 \\ & 2.1^{\prime} \\ & 29^{\prime} \\ & 3 .{ }^{\prime} \end{aligned}$ | $\begin{aligned} & 7 \\ & 10 \\ & 13 \\ & 16^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 40 \\ & 58 \\ & 75 \\ & 85 \\ & \hline \end{aligned}$ | $\begin{aligned} & 186 \\ & 91 \\ & 54 \\ & 36 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.6^{\prime} \\ & 23^{\prime} \\ & 3.0^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 14^{\circ} \\ & 2.0^{\prime} \\ & 26 \\ & 3.2 \\ & \hline \end{aligned}$ | 3 <br> 4 <br> 5 <br> 6 | $\begin{aligned} & 5.2 \\ & 8.9 \\ & 8.7 \\ & 10.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 794 \\ & 109 \\ & 70 \\ & 49 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.1 .1 \\ & 2.9 \\ & 36^{\prime} \\ & 43^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 . .^{\prime} \\ & 1.4^{\prime} \\ & 1.7 \\ & 21 \\ & \hline \end{aligned}$ | 5 7 9 11 11 | $\begin{array}{r} 50^{\prime} \\ 7 \mathrm{f}^{\prime} \\ 80^{\prime} \\ 11.0^{\prime} \\ \hline \end{array}$ | $\begin{aligned} & 198 \\ & 101 \\ & 61 \\ & 41 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.8_{1}^{\prime} \\ & 3.8^{\prime} \\ & \hline \end{aligned}$ | 1.2 <br> 1.7 <br> 25 <br> 2.7 |
|  | $A$ | 2500 | 4000 | $\begin{gathered} 8^{\prime} \\ 10 \\ 10 \end{gathered}$ | $\begin{aligned} & 156 \\ & 59 \\ & 39 \\ & 25 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 3.8^{\prime} \\ & 5.2 \\ & 6.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{2 . 5} .^{\prime \prime} \\ & 3.8^{\prime \prime} \\ & 5.2^{\prime} \\ & 6 . \end{aligned}$ | $\begin{aligned} & \hline \mathbf{3} \\ & \mathbf{5} \\ & 7 \\ & 9 \\ & \hline \end{aligned}$ | $\begin{aligned} & 17 \\ & 2.9^{\prime} \\ & 40^{\prime} \\ & 5 . \\ & \hline \end{aligned}$ | $\begin{aligned} & 180 \\ & 65 \\ & 33 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 2.7 \\ 4.5 \\ 8.3 \\ 6.1 \\ \hline \end{array} . \begin{array}{l}  \\ \hline \end{array}{ }^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 23^{\prime} \\ & 3.8^{\prime} \\ & 5,3^{\prime} \\ & 6.6^{\prime} \end{aligned}$ | 1 <br> $1^{\prime}$ <br> 3 <br> 3 <br> 4 | $\begin{array}{r} 17 \\ 35^{\prime} \\ 51^{\prime} \\ 69^{\prime} \\ \hline \end{array}$ | $\begin{aligned} & 313 \\ & 78 \\ & 35 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{array}{r} 38^{\circ} \\ 35 \\ 11.4^{\circ} \\ 352^{\prime} \\ \hline \end{array}$ | $\begin{aligned} & 1.3 \\ & 2.6 \\ & 3.9 \\ & .5 .2 \\ & \hline \end{aligned}$ | 6 | $\begin{aligned} & 30^{\circ} \\ & 40^{\prime} \\ & 50^{\prime} \\ & 6.0^{\prime} \\ & \hline \end{aligned}$ | $\begin{aligned} & 98 \\ & 95 \\ & 55 \\ & 35 \\ & \hline 25 \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.4^{\prime} \\ & 5.8^{\prime} \\ & 7.3 \\ & 6.7 \\ & \hline \end{aligned}$ | 28 <br> 37 <br> 37 <br> 4.5 <br> 5.5 |
|  | $\prod_{\Delta^{\circ}}$ | 12,000 | 4000 |  | $\begin{aligned} & 188 \\ & 33 \\ & 47 \\ & 37 \end{aligned}$ | $\begin{aligned} & 2.0^{\circ} \\ & 2.9^{\circ} \\ & 3.99^{\circ} \\ & 49^{\circ} \end{aligned}$ | $\begin{aligned} & 2.0^{\circ} \\ & 2.5 \\ & 3 . \\ & 40 \end{aligned}$ | $\begin{aligned} & 70^{\prime \prime} \\ & 0^{\circ} \\ & 3^{\prime} \\ & 6^{\prime} \end{aligned}$ | $\begin{aligned} & 4.0^{\circ} \\ & 5.8^{\circ} \\ & 7.5^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 159 \\ & 78 \\ & 40 \\ & 30 \end{aligned}$ | $\begin{aligned} & 2.3 \\ & 3.3 \\ & 4.3 \\ & 5.3 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 2.8 \\ & 3.7 \\ & 4.5 \end{aligned}$ | 3 <br> 4 <br> 4 <br> 5 <br> $5^{\prime}$ | $\begin{aligned} & 5.7 \\ & 6.9^{\prime} \\ & 87^{\prime} \\ & 10.4^{\prime} \end{aligned}$ | $\begin{aligned} & 1601 \\ & \hline 64 \\ & 60 \\ & 42 \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 4.1 \\ & 5.1 \\ & 6.1 \\ & 6.2^{\prime} \end{aligned}$ | $\begin{aligned} & 1.5^{\prime} \\ & 2.0^{\prime} \\ & 2.9^{\prime} \end{aligned}$ | 5 7 7 9 11 | $\begin{aligned} & 5.0^{\circ} \\ & 7.0^{\prime} \\ & 9.0^{\prime} \\ & 11.0^{\circ} \end{aligned}$ | $\begin{aligned} & 1701 \\ & 87 \\ & 52 \\ & 35 \end{aligned}$ | $\begin{aligned} & 25 \\ & 5.5 \\ & 4.5 \\ & 5.5 \end{aligned}$ | 1.7 2.4 3.1 3.8 |
| $\sum_{\substack{75 \mathrm{WMR} \\ \mathrm{NFL}(\mathrm{EY} \sim)}}^{\substack{i}}$ | $\begin{aligned} & A \\ & 25^{\circ} \end{aligned}$ | 4900 | 4000 | 8 10 10 $12^{\prime}$ | 136 77 49 34 | $\begin{aligned} & 2.7^{\prime} \\ & 3.5 \\ & 4.7^{\prime} \\ & 5.3^{\prime} \end{aligned}$ | $\begin{aligned} & 2.7 \\ & 3 . \\ & 4.4 \\ & 5.3 \end{aligned}$ | $\begin{gathered} 5^{\prime} \\ 7 \\ 9^{\prime} \\ 1_{1}^{\prime} \\ \hline \end{gathered}$ | $\begin{aligned} & 2.9^{\prime} \\ & 40 \\ & 5.2 \\ & 6.4 \end{aligned}$ | $\begin{aligned} & 122 \\ & 65 \\ & 35 \\ & 36 \\ & \hline 26 \end{aligned}$ | $\begin{aligned} & 3.0^{\circ} \\ & 42^{\circ} \\ & 5.4^{\circ} \\ & 6.6^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 2.6^{\prime} \\ & 3.6^{\prime} \\ & 4.6^{\prime} \\ & 5.6^{\prime} \\ & \hline \end{aligned}$ | 2 <br> 3 <br> 4 <br> 4 <br> 5 | $\begin{aligned} & 3.5^{\circ} \\ & 5.2^{\prime} \\ & 6.9 \\ & 8.7 \\ & \hline \end{aligned}$ | $\begin{aligned} & 153 \\ & \hline 58 \\ & 38 \\ & 38 \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.22^{2} \\ & 6.3^{2} \\ & 33^{\prime} \\ & 10.4^{\prime} \\ & \hline \end{aligned}$ | 1.8 <br> 2.7 <br> 3.5 <br> 4.4 | $3^{\prime}$ $5^{\prime}$ $7^{\prime}$ $9^{\prime}$ | $\begin{aligned} & 30^{\prime} \\ & 50 \\ & 50 \\ & 3 . \\ & 3 . \end{aligned}$ | $\begin{aligned} & 192 \\ & 69 \\ & 65 \\ & 35 \\ & 21 \end{aligned}$ | $2.8{ }^{\circ}$ 4.7 8.5 8.4 |  |
| $\underset{\substack{\text { ThWMR-16 } \\ \text { FLAEC: }}}{\Sigma=}$ | $\widehat{42}$ | 2100 | 4000 | \% ${ }^{4}{ }^{\prime}{ }^{\prime}$ | $\begin{aligned} & \hline 171 \\ & \hline 18 \\ & 33 \\ & 21 \end{aligned}$ | $\begin{aligned} & 3.1^{\prime} \\ & 4.5^{\prime} \\ & 6.1^{\prime} \end{aligned}$ | $\begin{aligned} & 9.1 \\ & 4.6 \\ & 6.1 \\ & 7.8 \end{aligned}$ | $\begin{aligned} & \hline 3^{\prime} \\ & \mathbf{y}^{\prime} \\ & 9^{\prime} \end{aligned}$ | $\begin{aligned} & 1.7^{\prime} \\ & 2.9^{\prime} \\ & 4.0^{\prime} \\ & 5 .{ }^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 152 \\ & 55 \\ & 28 \\ & 17 \end{aligned}$ | $\begin{aligned} & \hline 37^{\prime} \\ & 5.4^{\circ} \\ & 7.5^{\circ} \\ & 9.7 \end{aligned}$ | $\begin{aligned} & \hline 2 . .^{\prime} \\ & 9.4^{\prime} \\ & 6.2^{\prime} \\ & 6.0 \end{aligned}$ | $1^{\prime}$ $2^{\prime}$ 3 $4^{\prime}$ | $\begin{aligned} & 1.7^{\prime \prime} \\ & 3.5^{\prime \prime} \\ & 5.2 . \\ & 6 .{ }^{\prime} \end{aligned}$ | $\begin{aligned} & \hline 263 \\ & \dot{\sigma E} \\ & \pi \\ & 1 \in \end{aligned}$ | $\begin{gathered} \hline 5.5^{\circ} \\ 110^{\circ} \\ 16.5 \\ 22.0^{\prime} \end{gathered}$ | 15 3.1 $4 . \mathrm{E}^{\circ}$ 6.1 | $3^{\prime}$ $4^{\prime}$ 5 6 6 | $\begin{aligned} & 30^{\prime} \\ & 400^{\prime} \\ & 5.0^{\prime} \\ & 60^{\prime} \end{aligned}$ | $\begin{aligned} & 62 \\ & 46 \\ & 30 \\ & 21 \end{aligned}$ | 5.4 7.2 9.0 10.8 | 3.3 4.3 5.4 6.5 |

## 378X LytePoints 3 3/4"

## Adjustable Elbow MR16

(FC) is initial foorcandles at center of beem. Beame length (L) and beam width (Wi ore 10 whe e the candileposwer is reduced to $50 \%$ of zenter beem andullepower.
CBCP is cemter beam candlepowe C) is distance to the center of the bear
amp data shown is typical, ald is based en bare amp photometrics. Contac: lamp manutaceurers tor availabilty and pertormence

$0^{\circ}$ Alming angle
$30^{\circ}$ AIMING ANGLE
$30^{\circ}$ AIMING ANGLE

D $\quad \mathbf{C}$ FC $\quad \mathbf{L} \quad \mathbf{w}$


45 AIMING ANGLE $\mathrm{C} \quad \mathrm{FC} \quad \mathrm{W}$

Mr-16 halogen low voltage bi-pin lamps with aluminized (non-dichrole) reflectors

| $\underbrace{5}_{50 \mathrm{MFP}}$ | $A_{11^{*}}$ | 10.500 | 3500 |
| :---: | :---: | :---: | :---: |
| $\sum_{\substack{\text { SOWMR } \\ \text { NFI }}}^{\mathrm{M}}$ | $A$ | 3000 | 3500 |
| $\underset{\mathrm{FL}}{50 \mathrm{~N}, 16}$ | $\Lambda_{40^{\circ}}$ | 1900 | 3500 |



## (S)ignify

